Title : Altered
O-glycan synthesis in lymphocytes from patients with Wiskott-Aldrich syndrome
Abstract :
- The only molecular defect reported for the X-linked immunodeficiency Wiskott-Aldrich syndrome ( WAS ) is the abnormal electrophoretic behavior of the major T lymphocyte sialoglycoprotein CD43
- Since the 70 to 80 O-linked carbohydrate chains of CD43 are known to influence markedly its electrophoretic mobility, we analyzed the structure and the biosynthesis of O-glycans of CD43 in lymphocytes from patients with WAS
- Immunofluorescence analysis with the carbohydrate dependent anti-CD43 antibody T305 revealed that in 10 out of the 12 WAS patients tested increased numbers of T lymphocytes carry on CD43 an epitope which on normal lymphocytes is expressed only after activation
- Other activation antigens were absent from WAS lymphocytes
- Western blots of WAS cell lysates displayed a high molecular mass form of CD43 which reacted with the T305 antibody and which could be found on in vivo activated lymphocytes but was absent from normal unstimulated lymphocytes
- To examine the O-glycan structures, carbohydrate labeled CD43 was immunoprecipitated and the released oligosaccharides identified
- WAS lymphocyte CD43 was found to carry predominantly the branched structure NeuNAc alpha 2----3Gal beta 1----3 (NeuNAc alpha 2----3Gal beta 1----4G1cNAc beta 1----6) GalNAcOH whereas normal lymphocytes carry the structure NeuNAc alpha 2----3Gal beta 1----3 (NeuNAc alpha 2----6) GalNAcOH.
- Only after activation NeuNAc alpha 2----3Gal beta 1----3 (NeuNAc alpha 2----3Gal beta 1----4GlcNAc beta 1----6) GalNAcOH becomes the principal oligosaccharide on CD43 from normal lymphocytes
- Analyzing the six glycosyltransferases involved in the biosynthesis of these O-glycan structures it was found that in WAS lymphocytes high levels of beta 1----6 N-acetyl-glucosaminyl transferase are responsible for the expression of NeuNAc alpha 2----3Gal beta 1----3 (NeuNAc alpha 2----3Gal beta 1----4GlcNAc beta 1----6) GalNAcOH on CD43
- The gene responsible for WAS has not yet been identified but the results presented in this study suggest that the primary defect in WAS may affect a gene which is involved in the regulation of O-glycosylation